A note on Linear codes associated to Schubert varieties

M.S. Wavare

Assistant Professor ,Rajarshi Shahu Mahavidyalaya Latur(Autonomous)

Abstract:

We consider the linear code associated with Schubert sub variety of Grassmannian's .In this review article we have studied the basic notions of Schubert code $C_{\alpha}(l,m)$. We have discussed the some known results and examples of Schubert code.

Key Words :Linear code ,Grassmannian, MDC, Schubert

1.Introduction:

Let q be the power of fixed prime and l and m be the positive integers with $l \leq m$.Let F_q denote the finite field with q elements and F_q^m be the vector space of dimension m over F_q .Let $\begin{bmatrix} m \\ l \end{bmatrix}_q$ denote Gaussian binomial coefficient and $G_{l,m}$ denote the Grassmannian of all l - planes of F_q^m . It is also known that the Grassmannian $G_{l,m}$ embeds into projective space $P(F_q)^{\binom{m}{l}-1} = P^{\binom{m}{l}-1}$ Via plucker embedding .The image under this mapping is projective algebraic variety .To every projective space one can associate a linear code (example in[1]). The linear code corresponding to $G_{l,m}$ is known as Grassmannian code and it is denoted by C(l,m).The Grassmannian code were introduced by C. T. Ryan in [2,3] for binary case .D Yu Nogin in [4] studied the linear code C(l,m)associated to the Grassmannian $G_{l,m}$ over finite field and verified that C(l,m) is an $[n, k, d]_q$ code where

$$n = \begin{bmatrix} m \\ l \end{bmatrix}_q = \frac{(q^{m-1})(q^m - q)\dots(q^m - q^{l-1})}{(q^l - 1)(q^l - q)\dots(q^l - q^{l-1})} , k = \binom{m}{l} \text{ and } d = q^{l(m-l)}$$

For fix integers k, n with $1 \le k \le n$ and prime q.Let C be linear $[n, k]_q$ code i.e C Is k-dimensional subspace of F_q^n . Given for any $x = (x_1, x_2, ..., x_n) \in F_q^n$, define $\sup(x) = \{i: x_i \ne 0\}$ and ||x|| =

 $|\sup(x)|$ denote support and Hamming norm of x, likewise for $D \subseteq F_q^n \sup(D) = \{i: x_i \neq 0 \text{ for some } x = (x_1, x_2, \dots, x_n) \in D \}$ and $||D|| = |\sup(D)|$ denote support and hamming norm of D The minimum distance or hamming weight of C is defined by $d(C) \coloneqq \min\{||x||: x \in C \text{ with } x \neq 0\}$.

For some positive integer r ,the rth higher weight or rth generalized hamming weight is denoted by $d_r = d_r(C)$ of the code C defined by

 $d_r(C) = \min\{||D||: D \text{ is subpace of } C \text{ and } \dim(D) = r\}$

The set $\{d_r(C) : 1 \le r \le k\}$ is complete weight hierarchy of the code C. For linear code C it is very interesting and difficult to determine complete weight hierarchy.

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_l)$ be strictly increasing sequence of positive integers satisfying

 $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_l \leq m$ and $\Omega_{\alpha}(l,m)$ be corresponding Schubert variety in Grassmannian $G_{l,m}$ Schubert varieties are sub-varieties of Grassmannian .Likewise Grassmannian varieties ,the Schubert variety may considered as subset of $P^{\binom{m}{l}-1}$ The linear code corresponding to Schubert variety $\Omega_{\alpha}(l,m)$ is called Schubert code and this code is denoted by $C_{\alpha}(l,m)$.Ghorpade-Tsfasman [5] had proved the minimum distance conjecture for Schubert code corresponding to case when $\delta(\alpha) = l(m-l) - 1$ and found length and dimension of Schubert code in general .In [5] Ghorpade -Tsfasman proved that Schubert code $C_{\alpha}(l,m)$ is $[n_{\alpha},k_{\alpha}]$ code where $n_{\alpha} = \sum_{\beta \leq \alpha} q^{\delta(\beta)}$, $k_{\alpha} = \int_{1 \leq i,j \leq l} \binom{\alpha_j - j + 1}{i - j + 1}$ where sum is run over all l – tuples $\beta = (\beta_1, \beta_2, \dots, \beta_l)$ of integers satisfying $1 \leq \beta_1 \leq \beta_2 \leq \cdots \leq \beta_l \leq m$ and $\beta_i \leq \alpha_i$ for $i = 1,2,3 \dots l$ and $\delta(\beta) = \sum_{i=1}^{l} (\beta_i - i)$.Alternating proof of MDC for Schubert code was given in [6] and [7].

2. Preliminaries :

The Grassmannian of all *l*-planes of F_q^m is given by ,

 $G_{l,m} := \{L \subseteq F_q^m : L \text{ is subspace of } F_q^m \text{ and } \dim L = l \}$. Due to plucker embedding of $G_{l,m}$ into projective space $P_l^{\binom{m}{l}-1}$, Choose matrix A_L whose rows forms basis for L. The order of A_L will be $l \times m$

matrix with rank l. In A_L we have $\binom{m}{l}$ minors of order l. By fixing some ordering of these minors and map L onto $\binom{m}{l}$ tuples of minors of A_L of size l which is required embedding of $G_{l,m}$ into projective space $P\binom{m}{l}^{-1}$.

Let $X = (X_{ij})$ be $l \times m$ indeterminate matrix over F_q .Let *l*-multiset $I \subset \{1, 2, ..., m\}$ denote $l \times l$ minor of X corresponding to the columns indexed by I by $\det_I(X)$ and $F_q[X]_l$ be a vector space over F_q spanning by minors of $\det_I(X)$.Then for any L in $G_{l,m}$, the $l \times m$ matrix A_L is matrix whose rows span L.

Consider the evaluation map $Ev: F_q[X]_l \to F_q^{\binom{m}{l}_q}$ defined by

 $f = \sum_{I} \alpha_{I} det_{I}(X) \rightarrow (f(A_{L}))_{L \in G_{L,m}}$ and $f(A_{L}) = \sum_{I} \alpha_{I} det_{I}(A_{L})$ i.e. $f(A_{L})$ is evaluation of f at A_{L} The image of this is called Grassmann code C(l, m). The image Ev(f) of f denoted by c_{f} is codeword corresponding to f.

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_l)$ be the sequence of strictly increasing positive integers and $A_1 \subset A_2 \subset A_l$ be the sequence of subspaces of F_q^m with dim $A_i = \alpha_i \forall i$.

Let $\Omega_{\alpha}(l,m) = \{W \in G_{l,m}: \dim(W \cap A_i) \ge i, \forall i\}$ be the Schubert variety in $G_{l,m}$ corresponding to sequence α . If the above evaluation map is restricted to $\Omega_{\alpha}(l,m)$ then it will be Schubert code $C_{\alpha}(l,m)$.The Schubert variety $\Omega_{\alpha}(l,m)$ only depends on the sequence α not on corresponding sequence $A_1 \subset A_2 \dots \subset A_l$ of subspaces .If $B_1 \subset B_2 \dots \subset B_l$ is another sequence of subspaces of F_q^m with dim $B_i = \alpha_i$ for every i .If $\Omega_{\alpha}(A_1, A_2, \dots, A_l, m)$ denotes the Schubert varieties corresponding to the sequence of subspaces $A_1 \subset A_2 \dots \subset A_l$ and $\Omega_{\alpha}(B_1, B_2, \dots, B_l, m)$ denotes Schubert variety corresponding to sequence of subspaces $B_1 \subset B_2 \dots \subset B_l$ then due to [1] these corresponding Schubert codes are equivalent.

3. Basic Notions and some known facts about Schubert Code :

For fix integer l, m with $1 \le l \le m$.Let I(l, m) be the indexing set with partial order \le for any $\beta = (\beta_1, \beta_2, \dots, \beta_l) \in I(l, m)$.

Let
$$\delta_{\beta} \coloneqq \sum_{m}^{l} (\beta_{i} - i) = \beta_{1} + \beta_{2} + \dots + \beta_{l} - \frac{l(l+1)}{2}$$

For fix some $\alpha \in I(l, m)$ then $C_{\alpha}(l, m)$ be the corresponding linear code and length of Schubert code [9] is n_{α} given by

Thm 1 (Length of Schubert Code)[9]The number of F_q rational points of Ω_{α} which also length n_{α} of $C_{\alpha}(l,m)$ is given by $n_{\alpha} = \sum_{\beta \leq \alpha} q^{\delta_{\beta}}$ where the sum is over all $\beta \in I(l,m)$ satisfying $\beta \leq \alpha$ With the previous notations the explicit formula for the dimension of Schubert code $C_{\alpha}(l,m)$ is K_{α} is given by [9] in following result.

- - - -

Thm 2(Dimension of Schubert Code)

The dimension of Schubert code $C_{\alpha}(l, m)$ is given by $l \times l$ determinant and given due to [9] by

$$K_{\alpha} = \frac{\det}{1 \le i, j \le l} \left(\begin{pmatrix} \alpha_{j} - j + 1 \\ i - j + 1 \end{pmatrix} \right) = \begin{vmatrix} \binom{\alpha_{1}}{1} & 1 & 0 & \dots & \mathbf{0} \\ \binom{\alpha_{1}}{2} & \binom{\alpha_{2} - 1}{1} & 1 & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots \\ \binom{\alpha_{1}}{l} & \binom{\alpha_{2} - 1}{l - 1} & \binom{\alpha_{3} - 2}{l - 2} \dots & \binom{\alpha_{l} - l + 1}{1} \end{vmatrix}$$

Thm 3[9]: The dimension k_{α} of q-ary Schubert code $C_{\alpha}(l,m)$ is independent of q and is related to the length $n_{\alpha} = n_{\alpha}(q)$ of $C_{\alpha}(l,m)$ by the formula $\lim_{\alpha \to 1} n_{\alpha}(q) = k_{\alpha}$

4.Examples of Schubert Code :

Example 4.1

Let $\alpha = (2,4)$ then $C_{\alpha}(2,4)$ is corresponding Schubert code then dimension of $C_{\alpha}(2,4)$ is 5

Example 4.2

Let $\alpha = (3,5)$ then $C_{\alpha}(3,5)$ is corresponding Schubert code and dimension of $C_{\alpha}(3,5)$ is 9

Acknowledgement : Author is very much thankful to UGC for providing financial support in the form of

Minor research project under XII plan.

5. References :

[1]M.Tafsaman ,S Vladut and Nogin Algebraic Geometric Codes :Basic notions Math.Surv Monger

,139(2007)Amer. Math. soc. Providence

[2]Ryan C T, An application of Grassman varieties to coding theory ,Congr. Numer 57(1987)257-271.

[3] Ryan C T , Projective codes based on Grassmann varieties congr. Numer 57 (273-279)

[4]D Yu Nogin ,Codes associated to Grassmannians Arithmatic, Geometry and Coding Thneory (Luminy,1993), R Pellikaan,M Perret ,S G Vladut,EDS,Walter de Gruyter,Berlin (1996),145-154.

[5] S R Ghorpade and M A Tsfasman Schubert Varieties linear codes and enumerative combinatorics , Finite fields and their applications,11(2005) 684-699.

[6]X Xaing On the minimum distance conjecture for Schubert Codes, IEE Trans. Inf Theory 54(2008)486-488

[7]S R Ghorpade and P Singh ,Minimum Distance and minimum weight codewords of Schubert Codes , Finite Fields and applications 49(2018), 1-18.

[8]V K Wei ,Generalized hamming weight for linear codes IEEE Trans. Infor Theory ,37 1991 1412-1418

[9]S R Ghorpade ,M A Tsfasman ,Basic Parameters of Schubert Code ,Preprint (2002)

[10]L Guerra ,Rita Vincenti ,on Linear code arising from Schubert varieties ,designs Codes and Cryptography (2004)33:173

[11]S R Ghorpade ,Prasant Singh Minimum Distance and the minimum weight codewords of Schubert Codes,Finite fields and their applications 49.10.1016/jffa.2017.08.014.